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Abstract
The energy eigenvalues and eigenfunctions of a core–shell CdSe/ZnS quantum
dot structure have been obtained under an effective-mass approximation. The
electric transition dipole moment induced by the 1s (inside the well)–1s (outside
the well) transition has been calculated. The optical nutation signal induced
by the transition has been calculated numerically based on the optical Bloch
equations. In particular, the influence of the size variation of the core’s radius
and the shell’s thickness has been studied. It has been shown from the results
that the optical nutation signal is sensitive to the size and structure, and that
there is an optimal structure and size for the optical nutation phenomenon. The
quantum size dependent Rabi frequency and intensity of the optical nutation are
also discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The low-dimensional semiconductor structures such as quantum wells (QWs), quantum wires
(QWRs) and quantum dots (QDs) have been applied in many optoelectronic materials and
devices for optical communication, optical computing and biological probes [1–4]. Their
wonderful optical properties, especially the nonlinear optical properties, have attracted the
interest of many scientists. Many experimental and theoretical investigations are being carried
out [5–7]. Core–shell CdSe/ZnS QDs, which are like a type of wide direct gap semiconductor
QD made of II–VI crystal classes, is one such structure under investigation. Its absorption and
photoluminescence spectra were studied by Azad Malik et al [8] and its conduction mechanism
and electroluminescence spectra were studied by Mhikmet and Talapin et al [9].
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The study of transient optical effects like photon echo, free-induction decay and optical
nutation has become one of the most important areas of research in this recently developed sub-
field. Among the different coherent transient phenomena, optical nutation is one of important
tools for the study of relaxation mechanisms and hot-carrier effects in semiconductor materials.
For example, it is an important approach in the calculation of the matrix elements of transition
dipoles and the lifetime of excited states [10, 11].

Normally in experiments on optical nutation a pulsed laser with a sufficiently sharp leading
edge is needed and a pulsed Stark-shift technique is used, which allows the observation of the
transient nutation, with a cw laser which has a line width much narrow than the Doppler width
of the transition. An dc electric field applied to the sample, which is in a Stark cell, can Stark-
shift the atoms or molecules in or out of resonance with the cw exciting laser beam. This is
equivalent to switching on or off the resonant exciting field, which is initially in resonance
with a group of particles. The sudden application of the electric field shifts the resonance to a
different group of particles, under the condition that the Stark shift is comparable to the Doppler
width. This new group of particles, following the switching on of the field, starts to absorb and
gives rise to the observed transient nutation. Due to the remarkable growth of femtosecond (fs)
laser technology, we can now observe the phenomenon of optical nutation in QWs, QWRs and
QDs of semiconductor materials by using a fs laser.

Optical nutation has been studied in bulk semiconductors using a two-level model by
Singh [12]. Sen has studied it in semiconductor QWs and QWRs; even those low-dimensional
structures were put into a strong magnetic field [13, 14]. However, there has been little work
about optical nutation in core–shell QDs.

In this paper, we make an attempt to investigate theoretically the optical nutation induced
by the 1s (inside the well)–1s (outside the well) electronic transition in core–shell CdSe/ZnS
QD, employing a two-level model. In particular we have studied the influence of quantum
confined effects (QCE) on the optical nutation signal while the inner radius or outer radius of
the QD is changed. In addition, we keep the radius of the QD smaller than the exciton Bohr
radius of the materials all the time, i.e. it is a strong confined system.

2. Model and theory

Suppose the model is an isolated CdSe/ZnS core–shell quantum dot with inner radius R1 and
outer radius R2 as shown in figure 1.

We consider it forms a shell well and a centric barrier because the two kinds of materials
have different potentials. The potential of the core is chosen to be the zero reference point of
energy, and the band-gap of ZnS is wider than that of CdSe, thus Vc > 0 [15]. On the premise of
the effective mass approximation, the steady Schrödinger equation for electron can be written
as{
− h̄2

2m∗
i r 2

[
∂

∂r

(
r 2 ∂

∂r

)
+ 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂ϕ2

]
+ Vi(r)

}
�nlm(r)

= E�nlm(r) (1)

where h̄ = h/2π , h is Planck’s constant, E is the energy eigenvalue and �nlm(r) is the
corresponding eigenfunction. n is the principal quantum number. l and m are the angular
momentum quantum numbers. m∗

i is the effective mass of an electron in the i th region. Vi(r)

is the potential of the i th region. The values of m∗
i and Vi (r) are relative to the position in the

model and are expressed as follows:
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Figure 1. The core–shell CdSe/ZnS QD model and its schematic diagram of potential.

Vi (r) =

⎧⎪⎨
⎪⎩

0, 0 < r � R1

Vc, R1 < r � R2

∞, r > R2.

(3)

As the mass and the potential are spherically symmetric, the separation of radial and
angular coordinates leads to

�nlm(r, θ, φ) = Rnl(r)Ylm(θ, φ) (4)

where Rnl(r) is the radial wavefunction and Ylm(θ, φ) is the spherical harmonic. The spherical
potential consists of three parts, and the radial eigenfunction Rnl(r) consists of three parts too,
corresponding to the position of the electron in the model. Consequently, to solve equation (1),
two cases need to be distinguished.

In the region where E > Vc, the solution for the radial wavefunction Rnl(r) is a linear
combination of a spherical harmonic Bessel function jl(x) and a spherical harmonic Neumann
function nl(x) [15, 16]

Rnl(r) =

⎧⎪⎨
⎪⎩

A1 jl(knl,1r) + B1nl(knl,1r) r � R1

A2 jl(knl,2r) + B2nl(knl,2r) R1 < r � R2

0 r > R2

(5)

with

knl,1 =
√

2m∗
1 E/h̄2 (6)

knl,2 =
√

2m∗
2(E − Vc)/h̄2. (7)

A1, A2, B1 and B2 are normalized constants.
The boundary conditions for the function are [17, 18]

Rnl,1(R1) = Rnl,2(R1) (8)

1

m∗
1

dRnl,1

dr

∣∣∣∣
r=R1

= 1

m∗
2

dRnl,2

dr
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r=R1

. (9)

The wavefunction is limited when r → 0, B1 = 0 and the wavefunction starts to vanish rapidly
when r → ∞, namely

Rnl,2(R2) = 0. (10)
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Figure 2. Description of the electron transition process.

The wavefunction must satisfy the normalization condition∫ r1

0
r 2 R∗

nl,1 Rnl,1 dr +
∫ r2

r1

r 2 R∗
nl,2 Rnl,2 dr = 1. (11)

The four coefficients A1, A2, B2 and E can be obtained by solving equations (8)–(11),
then the wavefunction and eigen-energy are obtained.

In the region where E < Vc, the radial wavefunction will stay the same as the above where
r � R1 and r > R2, but in the range of R1 < r � R2 the radial wavefunction is a linear
combination of two Hankel functions h(+)

l and h(−)

l

Rnl(r) =

⎧⎪⎨
⎪⎩

A′
1 jl(knl,1r) + B ′

1nl(knl,1r) r � R1

A′
2h(+)

l (iknl,2r) + B ′
2h(−)

l (iknl,2r) R1 < r � R2

0 r > R2

(12)

with

knl,2 =
√

2m∗
2(Vc − E)/h̄2. (13)

It is obvious that B ′
1 = 0 and A′

1, A′
2, B ′

2 and E can be obtained by solving equations (8)–(11).
Of course, we can restrict the calculations to the 1s state inside the well (l = m = 0) and

the 1s state outside the well (l = 1, m = 0). These calculations can be performed not only for
electrons but also for holes.

We consider a single photon transition process in a two-level system (figure 2). Due to the
fact that the radius of the semiconductor QD is kept smaller than its Bohr radius, the kinetic
energy of those charge carriers is much bigger than the Coulomb interaction energy between
electrons and holes. The energy of electrons and holes is quantized. (The exciton Bohr radius
is 5.6 nm in bulk CdSe materials.) Therefore the Coulomb interaction term can be neglected,
and we can use the particle-in-the-box-model (PBM) for analysis.

The Hamiltonian for this system while it is irradiated with a femtosecond laser pulse can
be written as:

H = H M + H I + H R (14)

where

H M =
[

Ea 0
0 Eb

]
(15)

H I = −μ · E0 =
[

0 −μab E0

−μba E0 0

]
(16)
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[ H R, ρ ] = ih̄

(
ρaaγa ρabγab

ρbaγab ρbbγb

)
(17)

where H M is the unperturbed Hamiltonian, Ea and Eb are the energy eigenvalues of a and b
levels, respectively, H I is the interaction Hamiltonian between the light field and the QD, E0 is
the electric component of the polarized light field, μ is the electric dipole moment of transition,
and

μ =
(

0 μab

μba 0

)
(18a)

in which

μab = 〈�a|−er |�b〉. (18b)

H R is the relaxation Hamiltonian, γa and γb are the longitudinal relaxation velocities of energy
levels a and b and γab is the transverse relaxation velocity.

The Liouville equation for the density matrix is

ih̄
∂ρ

∂ t
= [ H M + H I, ρ ] + ih̄

(
∂ρ

∂ t

)
damping

. (19)

Then, the optical Bloch equation can be derived using the rotating-wave approximation
and slowly varying amplitude approximation:

u̇ = 
v − γabu = 
v − u

T2
(20a)

v̇ = −
u + χw − γabv = −
u + χw − v

T2
(20b)

ẇ = −χv − γ [w − w0] = −χv − w − w0

T1
(20c)

where u, v and w are the three parameters of the Bloch vector M ≡ (u, v,w). χ is the Rabi
frequency, in the case of near-resonant excitation,

χ = μab E0

h̄
(21)

where γ = 1/T1, γab = 1/T2; T1 and T2 are the longitudinal and transverse relaxation times,
respectively, of the energy level. 
 is the deviation of frequency between the irradiating light
field frequency and the resonant frequency of the material; usually it is zero in the special case
of a near-resonant excitation by a polarized quasi-monochromatic field.

We can solve these three equations, (20a), (20b) and (20c), and the analytical solution is
as follows:

( u
v

w

)
= eγ t w0

⎛
⎜⎝

χ


g2 (1 − cos gt)
χ

g sin gt

1 − χ2

g2 (1 − cos gt)

⎞
⎟⎠ (22)

where g = √
χ2 + 
2 is the rotational velocity of processional motion.

The induced effective polarization in the QD can be calculated as

Peff = −μab

∫ ∞

−∞
v dvz = − μabχ

vr
√

π
e−γ t ′

(N0
a − N0

b )

∫ ∞

−∞
exp(−v2

z /v
2
r )

sin gt ′

g
dvz (23)

where vz is the velocity component of the thermal motion of an atom in the direction of the
laser pulse. vr is the root-mean-square value of the velocity of the thermal motion of an atom
and N0

a − N0
b is the difference ion the particle population in unit volume between two energy

levels in the initial state.
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Figure 3. The optical nutation signal under the condition that R1 = 4.5 nm, R2 = 5.5 nm and the
resonant wavelength λ = 1075 nm.

The numerical solution of the induced polarization can be obtained by solving
equations (22) and (23). The expression of the transient nutation signal can be obtained as

IS = − 1
2 E0ωL Peff(t − τ ) (24)

where ω is the frequency of the laser pulse, L is the thickness of the sample and τ is the time
that the laser pulse takes to cross the sample.

3. Results and discussion

The QD is excited near-resonantly by a 150 fs pulsed laser, whose electric field amplitude
E0 = 5 × 107 V m−1. It is under a weak excitation regime and at low temperature [19].

The parameters used in the calculation are chosen as follows: m∗
e,CdSe = 0.13 m0, m∗

e,ZnS =
0.28 m0 (m0 is the rest mass of electron), Vc = 1.03 eV [16, 20], the relaxation times
T1 = T2 = 300 fs and N0

a − N0
b = 5 × 1024 m−3 [21, 22].

First, we have calculated the electric transition dipole moment induced by 1s (inside the
well)–1s (outside the well) transition using equation (18) under the condition that μab =
5.101 × 10−29 C m, R1 = 4.5 nm and R2 = 5.5 nm. The optical nutation signal is obtained
from equations (23) and (24), and is shown in figure 3.

It is shown in figure 3 that the nutation signal decays rapidly: it arises due to the transient
polarization induced in the QD and decays for the reason that the absorption coefficient is
directly proportional to the population difference of the electrons, which is decreasing rapidly.
Similar decay behaviour for quantum wires and micro-cavity was reported in [13, 14, 23–25].

Secondly, when one of R1 and R2 remains steady and the other changes, there are some
interesting phenomena concerning the variation of the nutation signal.

Figure 4 illustrates that when R2 varies from 4.8 to 7.8 nm and R1 = 4.8 nm is kept
steady the intensity of the optical nutation signal increases first and then decreases, and the
Rabi frequency of the oscillation increases first and then decreases too. This behaviour reveals
that, with growth in the thickness of the shell while the size of the core does not change, there
is an optimum structure and size for the optical nutation phenomenon. It means the nonlinear
optical properties of the heterostructure particles are dependent on its size and structure.
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Figure 4. The optical nutation signal changes with the size of R2 when R1 = 4.8 nm.

Figure 5. The electric transition dipole moment as a function of R2 (R1 = 4.8 nm kept steady).

According to equations (21), (23) and (24), the immediate cause for this is the increase or
decrease in the electric transition dipole moment of the heterostructure particles with the change
of size and structure. The electric transition dipole moment has been calculated numerically
and the result is shown in figure 5. It shows that there is a process of growth first and then
decline. The maximum of the electric transition dipole moment is found under the condition
that R2 = 6.05 nm and R1 = 4.8 nm.

This phenomenon can be explained by QSCE theory. There are two factors that influence
the variation of the electric transition dipole moment, energy spacing between these two energy
levels and charge distribution. It can be seen from figure 6 that because the growth of the
thickness of the shell weakens the QSCE outside the well, the energy spacing between two 1s
states decreases [26]. This will lead to an increase in the electric transition dipole moment [15].

However, figure 7 shows that the value of
∫ R1

0 r 2 R∗ R dr decreased with growth of R2,
i.e. the probability of occurrence of electrons appearing inside the core was reduced with the
growth of R2. The reason for this is that the QSCE inside the shell diminished and that inside
the core remained steady; therefore more electrons will exist inside the shell with the growth
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Figure 6. The energy spacing between two 1s states as a function of R2 (R1 = 4.8 nm kept steady).

Figure 7. The probability of electrons presenting inside the core as a function of R2 (R1 = 4.8 nm
kept steady).

of R2. This will prevent electrons from relaxing to the 1s state inside the well and diminish the
electric transition dipole moment.

So there exists competition between these two factors, and the result is that the electric
transition dipole moment increases first and decreases later. The optimum structure and size
for the optical nutation phenomenon is R2 = 6.05 nm when R1 = 4.8 nm is kept steady.

The same thing happens when R1 changed and R2 = 5.5 nm kept steady. It is shown
in figure 8 that, when R2 = 5.5 nm, with the increase of R1 the electric transition dipole
moment element μab between these two 1s states increases first then decreases. The reason is
as same as that given above: the growth of the inner radius R1 will weaken the QSCE inside
the core and strengthen the QSCE inside the shell, the energy spacing between these two 1s
states will increase and the occurrence probability that electrons will appear inside the core
will be enhanced. The former factor will reduce μab and the latter factor will enhance μab.
Therefore, the electric transition dipole moment increases first and decreases later because of
the competition between these two factors.
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Figure 8. The electric transition dipole moment as a function of R1 (R2 = 5.5 nm kept steady).

Figure 9. The optical nutation signal as a function of the size of R1 (R2 = 5.5 nm kept steady).

It can be seen from figure 9 that the optical nutation signal varies in the same way as for the
case of changing R2 when R1 kept steady: with the growth in size of the core when R2 is kept
steady, the Rabi frequency of the oscillation increases first and decreases later, and the intensity
of the optical nutation signal increases first and decreases later too. The optimum structure and
size for the optical nutation phenomenon in this system is R1 = 4.75 nm when R2 = 5.5 nm
kept steady.

4. Conclusion

In conclusion, a theoretical analysis of the optical nutation signal of a core–shell CdSe/ZnS QD
has been presented in this paper based on the effective-mass approximation and the two energy
levels model. In particular the influence of the change of the size parameter of the QDs on the
optical nutation signals of the 1s (inside the well)–1s (outside the well) transition of electrons
has been investigated. The results of numerical calculation reveal that the nutation signals are
greatly dependent on the size and structure of the QD. The reasons for this have been discussed
in terms of the theory of QSCE.

It would be much better if there were experimental results available for the optical transient
nutation induced in CdSe/ZnS core–shell quantum dot sample so that a comparison could be
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made between the theoretical and experimental results. Unfortunately, to date there have been
no reports of such experimental work on optical nutation in CdSe/ZnS core/shell quantum dots.
In the analysis of size-dependent optical nutation in core–shell quantum dots, only the laser
field–quantum dot interaction was considered, i.e. other interactions, especially the Coulomb
interaction between electrons and holes, have not been taken into account. We will include this
in future work in order to improve the considered approximation.
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